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Cr(salen) complex 3 was found to be an efficient catalyst for
asymmetric addition of allyltributylstannane to non-branched
aliphatic aldehydes, giving the corresponding homoallylic alco-
hols in a highly enantioselective manner. For example, its addi-
tion to 3-phenylpropanal and 6-phenoxyhexanal proceeded with
92 and 94% ees, respectively, under atmospheric pressure.

The nucleophilic addition of allylic organometallics to alde-
hydes or ketones such as the Hosomi–Sakurai reaction is a con-
ventional method for synthesis of homoallylic alcohols and its
asymmetric version has been extensively studied by using chiral
Lewis acid as catalyst.1,2 In 1991, Yamamoto and co-workers re-
ported a seminal study of this type of reaction, addition of allyl-
trimethylsilane catalyzed by a chiral acyloxy borane derived
from tartaric acid.3 Since then, many efficient methods for the
enantioselective addition of allylstannane and allylsilane deriv-
atives have been developed and good to high enantioselectivities
have been achieved in the reactions of both aromatic and aliphat-
ic aldehydes.4 Although many chiral Lewis acids have been used
as catalysts, chiral Ti(IV)–BINOL,5 Zr(IV)–BINOL,6 Ag(I)–
BINAP,7 In(III)–PYBOX8 and Rh(III)–BOX complexes9 are
among the most efficient ones. Especially, a bimetallic Ti-BI-
NOL complex served as excellent catalyst.10 In 2004, Cr(salen)
complex 1 (Figure 1) was found to catalyze enantioselective ad-
dition of allyltributylstannane to alkyl glyoxylates.11 Recently, 1
was further reported to catalyze addition of allyltributylstannane
to simple aldehydes with good enantioselectivity (up to 79% ee)
under high-pressure (10 kbar).12 We recently found that readily
available and manageable chiral Cr(salen) complexes 2 serve
as efficient Lewis acid catalysts for hetero-Diels–Alder13 and
Mukaiyama-aldol reactions.14,15 Moreover, the salen ligand
bearing a binaphthyl unit has been disclosed to attractively inter-
act with substrates through a weak bond interaction such as
CH–� interaction.16 Thus, we expected that complexes 2 would
also catalyze addition of allyltributylstannane to simple alde-
hydes under milder pressure in an enantioselective manner.

We first examined addition of allyltributylstannane to 3-
phenylpropanal under atmospheric pressure in the presence of
2a bearing the same counter anion, BF4

�, as 1 and found that
it catalyzed the addition even at �20 �C, albeit with modest
yield. In addition, complex 2b bearing SbF6

� as the anion was
found to show better catalytic activity. Thus, we examined the
addition using 3–7 bearing SbF6

� anion as catalyst and found
that complex 3 bearing (R,R)-1,2-diphenylethylenediamine as
the diamine unit was the most effective catalyst for this reaction
in terms of enantioselectivity and chemical yield (Entry 3).
Complex 4 showed somewhat lower enantioselectivity (Entry
4). Complex 5 was less catalytically active and induced modest
enantioselectivity. However, the sense of asymmetric induction
by 5 was opposite to that by 3 or 4, indicating that the C200-aryl

substituent plays an important role in the asymmetric induction
and the expected ligand acceleration16 (Entry 5).

The effect of the solvent on enantioselectivity was examined
by using complex 3 as catalyst (Table 2) and the best enantiose-
lectivity was attained albeit with only modest yield, when the re-
action was carried out in tert-butyl methyl ether (TBME) (Entry
7). Fortunately, the chemical yield was improved and the selec-
tivity maintained, when the reaction was carried out in a 1:1
mixture of TBME and CH2Cl2 (Entry 8). Lowering the reaction
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Figure 1.

Table 1. Asymmetric addition of allyltributylstannane using
various Cr(salen) complexes as catalysts

Ph(CH2)2CHO

SnnBu3 CH2Cl2,  −20 °C, 24 h 

OH

Ph(CH2)2
+

(1.1 equiv)

cat. (5 mol %)

*

Entry cat. Yield/%a ee/%b Config.c

1 2a 16 80 S
2 2b 39 80 S
3 3 59 90 S
4 4 56 88 S
5 5 28 45 R
6 6 40 24 S
7 7 45 50 S

aIsolated yield. bDetermined by HPLC analysis using chiral
stationary phase column (Daicel Chiralcel OD-H, Ref. 7).
cAbsolute configuration was determined by chiroptical
comparison (Ref. 7).
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temperature did not affect the selectivity.
Under the optimized conditions, the reactions of other alde-

hydes were examined (Table 3). The reactions of nonbranched
aliphatic aldehydes such as octanal and 6-phenoxyhexanal also
proceeded with high enantioselectivity (>90%ee, Entries 1–
5). However, the reactions of bulky aldehyde and conjugated
aldehyde were sluggish, though the reason is unclear. Even at
23 �C, the reactions were considerably slow and modestly enan-
tioselective (Entries 6 and 7). A similar trend has been observed
in the reaction using Rh(III)-tetraaza complex as catalyst.17

Typical experimental procedure was exemplified by the re-
action of 3-phenypropanal and allyltributylstannane: Complex 3
(6.1mg, 5mol%) was dissolved in a mixture of CH2Cl2 (125
mL) and TBME (125mL) under nitrogen. To the solution was
added 3-phenypropanal (13mL, 0.10mmol), and the mixture
was cooled to�20 �C. Allyltributylstannane (34 mL, 0.11mmol)
was added to the mixture and stirred for 3 days at the tempera-
ture. The reaction mixture was treated with sat. NaHCO3, stirred
for 30 minutes, dried (Na2SO4), and filtered. The filtrate was

chromatographed on silica gel (hexane/AcOEt = 9:1) to give
the corresponding product in 80% yield. The enantiomeric
excess of the product was determined by HPLC analysis, as
described in the footnote to Table 1.

In conclusion, we were able to demonstrate that complex 3
catalyzes asymmetric addition of allyltributylstannane to simple
aldehydes under atmospheric pressure, though good substrates
were limited to nonbranched aldehydes.
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Table 3. Asymmetric allylation of various aldehydes using 3
as catalyst

RCHO

SnnBu3

OH

R

+

(1.1 equiv)

3 (5 mol %)

TBME/ CH2Cl2, −20 °C, 3 days

Entry R Yield/%a ee/%b Config.c

1 Ph(CH2)2 80 92 S
2d n-C7H15 77 92e —
3 PhO(CH2)5 84 94 —
4 PhO(CH2)2 67 94 —
5 (CH3)3CCOO(CH2)5 72 94e —
6f c-C6H11 18 40e R
7f Ph 40 53 R

aIsolated yield. bDetermined by HPLC analysis using chiral
stationary phase column (Daicel Chiralcel OD-H, Ref. 7), un-
less otherwise mentioned. cAbsolute configuration was deter-
mined by chiroptical comparison (Ref. 7). d10mol% of 3 was
used. When 5mol% of 3 was used, the yield and the ee of the
product were 56% and 92% ee, respectively. eDetermined by
HPLC analysis using chiral stationary phase column (Daicel
Chiralpak AS-H), after the product was converted into the cor-
responding 3,5-dinitrobenzoate (3,5-dinitrobenzoyl chloride,
triethylamine/dichloromethane). fReaction was carried out
at 23 �C.

Table 2. Optimization of asymmetric addition of allyltributyl-
stannane to 3-phenylpropanal using 3 as catalyst

Entry Solvent Temp/�C Time/h Yield/%a ee/%b

1 CH2Cl2 �20 24 59 90
2 CHCl3 �20 24 37 87
3 (CH2Cl2)2 �20 24 41 85
4 i-Pr2O �20 24 36 88
5 Et2O �20 24 30 77
6 THF �20 24 39 50
7 TBME �20 24 33 93
8 TBME/CH2Cl2 �20 24 59 92
9 TBME/CH2Cl2 �30 24 43 92

aIsolated yield. bDetermined by HPLC analysis using chiral
stationary phase column (Daicel Chiralcel OD-H, Ref. 7).
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